LINES

1. Find an equation for the line that goes through the two points $A(1,0,-2)$ and $B(4,-2,3)$.
2. Find an equation for the line that is parallel to the line $x=3-t, y=6 t, z=7 t+2$ and goes through the point $P(0,1,2)$.
3. Find an equation for the line that is orthogonal to the plane $3 x-y+2 z=10$ and goes through the point $P(1,4,-2)$.
4. Find an equation for the line of intersection of the planes $5 x+y+z=4$ and $10 x+y-z=6$.

PLANES

1. Find the equation of the plane that goes through the three points $A(0,3,4)$, $B(1,2,0)$, and $C(-1,6,4)$.
2. Find the equation of the plane that is orthogonal to the line
$x=4+t, y=1-2 t, z=8 t$ and goes through the point $P(3,2,1)$.
3. Find the equation of the plane that is parallel to the plane $5 x-3 y+2 z=6$ and goes through the point $P(4,-1,2)$.
4. Find the equation of the plane that contains the intersecting lines
$x=4+t_{1}, y=2 t_{1}, z=1-3 t_{1}$ and $x=4-3 t_{2}, y=3 t_{2}, z=1+2 t_{2}$.
5. Find the equation of the plane that is orthogonal to the plane $3 x+2 y-z=4$ and goes through the points $P(1,2,4)$ and $Q(-1,3,2)$.

LINES/PLANES/SPHERES

AND INTERSECTIONS:

1. Find the intersection of the line
$x=3 t, y=1+2 t, z=2-t$ and the plane
$2 x+3 y-z=4$.
2. Find the intersection of the two lines
$x=1+2 t_{1}, y=3 t_{1}, z=5 t_{1}$ and
$x=6-t_{2}, y=2+4 t_{2}, z=3+7 t_{2}$
(or explain why they don't intersect).
3. Find the intersection of the line
$x=2 t, y=3 t, z=-2 t$ and the sphere
$x^{2}+y^{2}+z^{2}=16$.
4. Find the intersection of the plane $3 y+z=0$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
